Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available August 4, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Free, publicly-accessible full text available February 1, 2026
- 
            Experiments today can compress solids near isentropically to pressures approaching 100 × 106 atmospheres; however, determining the temperature of such matter remains a major challenge. Extended x-ray absorption fine-structure (EXAFS) spectroscopy is one of the few techniques sensitive to the bulk temperature of highly compressed solid matter, and the validity of this temperature measurement relies on constraining the local ion structure from the EXAFS spectrum. At high-energy-density (HED) conditions, the local ion structure often becomes distorted, which must be accounted for during the EXAFS analysis. Described here is a technique, using a parametrized ion-distribution model to directly analyze EXAFS spectra that provides a better constraint on the local structure than traditional second- or third-order cumulant expansion techniques at HED conditions. The parametrized ion-distribution model is benchmarked by analyzing EXAFS spectra from nickel molecular-dynamics simulations at ∼100 GPa and shown to provide a 10%–20% improvement in constraining the cumulants of the true ion distribution.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available